生态修复是指恢复和改善受损生态环境的过程。为了实现这一目标,需要使用透水性好、抗腐蚀性强、价格相对较低的材料。
透水性
生态修复材料的透水性至关重要,因为它允许水渗透到土壤中。这对于植物生长、地下水补给和防止侵蚀是必不可少的。透水性差的材料会阻止水渗透,导致积水和根腐病。
抗腐蚀性
生态修复材料还必须具有良好的抗腐蚀性,因为它们将暴露在各种环境因素中,包括水分、阳光和极端温度。抗腐蚀性差的材料会随着时间的推移而降解,从而失去其有效性。
价格
价格是选择生态修复材料时要考虑的另一个重要因素。大面积生态修复项目需要大量的材料,因此价格是一个重要的考虑因素。成本较低的材料可以使大面积的修复工作变得更加可行。
材料选择
有多种类型的材料可用于生态修复,包括:
- 筛分土:筛分土是通过去除细颗粒物和有机物的过程而制成的。它透水性好,抗腐蚀性强,价格相对较低。
- 碎石:碎石是一种由岩石破碎制成的材料。它透水性好,抗腐蚀性强,但价格高于筛分土。
- 透水混凝土:透水混凝土是一种特制的混凝土,允许水渗透。它透水性好,抗腐蚀性强,但价格高于筛分土和碎石。
- 土工格栅:土工格栅是一种由聚酯或聚丙烯制成的合成材料。它透水性好,抗腐蚀性强,可以增强土壤的承载能力。
选择合适的材料
选择合适的生态修复材料取决于特定项目的具体要求,包括土壤条件、气候条件和预算。通过仔细考虑透水性、抗腐蚀性和价格等因素,可以选择出能够有效恢复和改善受损生态环境的材料。
绿色混凝土的分类
1.1 绿色高性能混凝土1998年吴中伟院士首次提出“绿色高性能混凝土”的概念,高性能混凝土具有普通混凝土无法比拟的优良性能,关于高性能混凝土的研究是当今土木工程界最热门的课题之一,如果将高性能混凝土与环境保护、生态保护和可持续发展结合起来考虑,则成为绿色高性能混凝土(GHPC)。 在1997年3月的“高强与高性能混凝土”会议上指出GHPC是混凝土的发展方向。 真正的绿色高性能混凝土应该是节能型混凝土,所使用的水泥必须为绿色水泥。 普通水泥生产过程中需要高温煅烧硅质原料和钙质原料,消耗大量的能源。 如果采用无熟料水泥或免烧水泥配制混凝土,就能显著降低能耗,达到节能的目的。 1.2 再生骨料混凝土再生骨料混凝土指以废混凝土、废砖块、废砂浆作骨料,加入水泥砂浆拌制的混凝土[1-3].我国20世纪50年代所建成的混凝土工程已使用50余年,许多工程都已经损坏,随着结构的破坏,许多建筑物都需要修补或拆除,而在大量拆除建筑废料中相当一部分都是可以再生利用的,如果将拆除下来的建筑废料进行分选,制成再生混凝土骨料,用到新建筑物的重建上,不仅能够根本上解决大部分建筑废料的处理问题,同时减少运输量和天然骨料使用量。 在德国,再生混凝土主要用于公路工程,如德国lowerSaxong的一条双层公路采用了再生骨料混凝土,该混凝土路面总厚度为26 em,底层混凝土19cm采用再生骨料混凝土,面层7 cm采用天然骨料配制的混凝土[4].为了更好地回收利用废混凝土,可将废混凝土经过特殊处理工艺制成再生骨料,用其部分或全部代替天然骨料配制成再生混凝土。 利用再生骨料配制再生混凝土是发展绿色混凝土的主要措施之一,可节省建筑原材料的消耗,保护生态环境,有利于混凝土工业的可持续发展。 但是,再生骨料与天然骨料相比,孔隙率大、吸水性强、强度低,因此再生骨料混凝土与天然骨料配置的混凝土的特性相差较大,这是应用再生骨料混凝土时需要注意的问题。 1.3 环保型混凝土混凝土材料给环境带来了负面影响,如制造水泥时燃烧碳酸钙排出的二氧化碳和含硫气体,形成酸雨,产生温室效应,进而影响环境。 据调查城市噪声的三分之一来自建筑施工,其中混凝土浇捣振动噪音占主要部分。 就混凝土本身的特性来看,质地硬脆,颜色灰暗,给人以粗、硬、冷的感觉,由混凝土的构成的生活空间色彩单调,缺乏透气性,透水性,对温度,湿度的调节性能差,在城市大密度的混凝土建筑物和铺筑的道路,使城市的气温上升[5].新型的混凝土不仅要满足作为结构材料的要求,还要尽量减少给地球环境带来的负荷和不良影响,能够与自然协调,与环境共生[6].因此,作为人类最大量使用的建设材料,混凝土的发展方向必然使既要满足现代人的需求,又要考虑环境因素,有利于资源、能源的节省和生态平衡,环保型的混凝土成为了混凝土的主要发展方向[7-8].1)低碱混凝土pH值在12~13,呈碱性的混凝土对用于结构物来说是有利的,具有保护钢筋不被腐蚀的作用。 但对于道路、港湾等,这种碱性不利于植物和水中生物的生长,所以开发低碱性、内部具有一定的空隙、能够提供植物根部或生物生长所必须的养分存在的空间、适应生物生长的混凝土是环保型混凝土的一个重要研究方向。 目前开发的环保型混凝土主要有多孔混凝土及植被混凝土。 多孔混凝土也称为无砂混凝土,它具有粗骨料,没有细骨料,直接用水泥作为黏结剂连接粗骨料,其透气和透水性能良好,连续空隙可以作为生物栖息繁衍的地方,而且可以降低环境负荷,是一种新型的环保材料[9].植被混凝土则是以多孔混凝土为基础,然后通过在多孔混凝土内部的孔隙加入各种有机、无机的养料来为植物提供营养,并且加入了各种添加剂来改善混凝土内部性质,是的混凝土内部的环境适合植物生长,另外还在混凝土表面铺了一层混有种子的客土,提供种子早期的营养。 2)透水混凝土透水性混凝土与传统混凝土相比,透水性混凝土最大的特点是具有15%一30%的连通孔隙,具有透气性和透水性,将这种混凝土用于铺筑道路、广场、人行道等,能扩大城市的透水、透气面积,增加行人、行车的舒适性和安全性,减少交通噪声,对调节城市空气的温度和湿度、维持地下土壤的水位和生态平衡具有重要作用。 透水性混凝土使用的材料有水泥、骨料、混合材、外加剂和水,与一般混凝土基本上相同,根据用途、目的及使用场合不同,有时不使用混合材和外加剂。 反映透水性混凝土性能的指标有孔隙率、透水系数、抗压强度、抗冻融循环性和干缩等[10].3)吸收分解NOx的光催化混凝土 城市工业和交通的发展,会导致城市的空气的质量的下降。 燃烧燃料也会对大气环境造成严重的影响,危害最大的是NOx. NOx(主要有NO,NO2,N2O)可引起酸雨、臭氧层破坏、温室效应及光化学烟雾等破坏地球生态环境和危害人的身体健康及其动植物的发育一系列问题。 光催化混凝土是绿色建材中的一种,它含有二氧化钛催化剂,因而具有催化剂,能氧化多数的有机和无机的污染物,尤其是工业燃烧和汽车尾气排放的NO,气体,使其降解为二氧化碳和水等无害物质,起着空气净化、美化环境的作用。 1.4 机敏型混凝土机敏混凝土是一种具有感知和修复性能的混凝土,是智能混凝土的初级阶段,是混凝土材料发展的高级阶段。 智能混凝土是在混凝土原有的组成基础上掺加复合智能型组分使混凝土材料具有一定的自感知、自适应和损伤自修复等智能特性的多功能材料,根据这些特性可以有效的预报混凝土材料内部的损伤,满足结构白我安全检测需要,防止混凝土结构潜在的脆性破坏,能显著提高混凝土结构的安全性和耐久性。 近年来,损伤自诊断混凝土、温度自调节混凝土及仿生自愈合混凝土等一系列机敏混凝土的相续出现,为智能混凝土的研究和发展打下了坚实的基础。 1)自诊断智能混凝土自诊断智能混凝土具有,压敏性和温敏性等性能。 普通的混凝土材料本身并不具有自感应功能,但在混凝土基材中掺入部分导电相组分制成的复合混凝土可具备自感应性能。 目前常用的导电组分可分为3类:聚合物类、碳类和金属类,而最常用的是碳类和金属类。 碳类导电组分包括石墨、碳纤维及碳黑;金属类材料则有金属微粉末、金属纤维、金属片及金属网等。 2)自调节机敏混凝土自调节机敏混凝土具有电力效应和电热效应等性能。 Wittmann F H在1973年首先研究了力由变形产生电、电力,由电产生变形效应。 Wittmann F H在做水泥净浆小梁弯曲时,通过附着在梁上下表面的电极可检测到电压,且对其逆反应一电力效应进行了研究,发现梁产生弯曲变形,改变电压的方向时,弯曲的方向也发生相应的变化。 机敏混凝土的力电效应、电力效应是基于电化学理论的可逆效应,因此将电力效应应用于混凝土结构的传感和驱动时,可以在一定范围内对它们实施变形调节。 例如,对于平整度要求极高的特殊钢筋混凝土桥梁,可通过机敏混凝土的电热和电力自调节功能进行调节由于温度自重所引起的蠕变;机敏混凝土的热电效应使其可以方便的实时检测建筑物内部和周围环境温度变化,并利用电热效应在冬季控制建筑物内部环境的温度,可极大的促进智能化建筑的发展。 3)自修复机敏混凝土混凝土结构在使用过程中,大多数结构是带裂缝工作的。 含有微裂纹的混凝土在一定的环境条件下是能够自行愈合的,但自然愈合有其自身无法克服的缺陷,受混凝土的龄期、裂纹尺寸、数量和分布以及特定的环境影响较大,而且愈合期较长,通常对较晚龄期的混凝土或当混凝土裂缝宽度超过了一定的界限,混凝土的裂缝很难愈合。 国内的研究表明,掺有活性掺和料和微细有机纤维的混凝土破坏后其抗拉强度存在自愈合现象;国外研究混凝土裂缝自愈合的方法是在水泥基材料中掺人特殊的修复材料,使混凝土结构在使用过程中发生损伤时,自动利用修复材料(粘结剂)进行恢复甚至提高混凝土材料的性能。 美国伊利诺伊斯大学的Carolyn Dry采用在空心玻璃纤维中注入缩醛高分子溶液作为粘结剂,埋人混凝土中,制成具有自修复智能混凝土。 当混凝土结构在使用过程中发生损伤时,空心玻璃纤维中的粘结剂流出愈合损伤,恢复甚至提高混凝土材料的性能。
如何综合利用雨水是解决城市的水资源不足和短缺有效途径?
如何综合利用雨水,是解决这些城市的水资源不足和短缺的有效途径。 是今天所要讲述的内容,随着我国工业化、城市化的进程不断加快,人们对水资源的需求量不断加大。 通过对雨水的回用,一是解决浇灌绿化、洗车等用水短缺问题,二是解决暴雨季节雨水泛滥所引起一系列的矛盾,雨水的收集和利用正好可以合理地环节这两大矛盾,三是解决雨水中所掺杂的杂质造成污染与都市的问题。 根据经验,雨水利用技术综合采取“渗、滞、蓄、净、用、排”等措施。
雨水的回收利用初探
一、雨水利用技术措施
1.1雨水收集
平时做好屋顶和房檐雨水槽,雨水管和雨水储存罐等维护工作,以保证收集的雨水有良好的水质,并且应尽量扩大集雨面积。
1.1.1收集经过简单过滤处理并去除水中悬浮颗粒物的雨水
摒弃初期污染雨水(屋顶等集雨面积上堆放物和附着物会污染雨水,尤其在干旱期过后的第一次降雨污染较重。 初期降雨的第一毫米雨水含污染物最多,即使作为非饮用水也不能使用,所以初期雨水必须排走不能收集)。
1.1.2雨量大时排放多余雨水避免雨水漫流。
从公路和轻轨路面收集的雨水多含有油类、垃圾、烟灰、金属粉末和其他有害物质,必须过滤处理,并只能限于冲洗厕所。
二、雨水监测
雨水在降落过程中,空气中的溶解性气体,溶解或悬浮状固体,重金属及细菌等会进入其中。 地表径流中的污染物主要来自降雨对地表的冲刷,所以地表沉积物是地表径流中污染物的主要来源。 地表沉积物的组成决定着地表径流污染的性质。 因此,雨水的水质会因地点、时间的不同有所差异。 从雨水质分析结果看,天然雨水中主要考虑的污染指标为SS、COD、硫化物、氮氧化物等,但浓度相对较低。
2.1雨水处理
通常收集来的雨水作为中水原水进行处理。 用途主要是城市污水再生利用分类中的城市杂用水类,城市杂用水包括绿化用水、冲厕、街道清扫、车辆冲洗、建筑施工、消防等。 污水再生利用按用途分类,包括农林牧渔用水、城市杂用水、工业用水、景观环境用水、补充水源等。 依据不同的用水要求进行不同深度的处理净化。 常用处理工艺流程:
2.2雨水储存
2.2.1防捞抗旱
以达到基本的防捞抗旱作用为依据来合理设计能满足雨水利用要求的储存设施和建筑物,即有可靠的调储容量和溢流排放设施。 随着雨水利用工作的逐渐普及,因地制宜开发了各种不同的雨水利用设施和系统。
2.2.2水量平衡
储存系统设计应进行水量平衡计算。 应根据工程的实际情况,往年雨水量和使用水量的平衡和稳定、系统的技术经济合理性等因素综合考虑确定。 系统中储存池的调节容积应按雨水量及处理量的之间关系求算。
2.2.3宜采用耐腐蚀、易清垢的材料制作
钢板池内、外壁及其附配件应采取防腐蚀处理。
2.2.4配备自来水补水管应采取自来水防污染措施
补水管出水口应高于雨水储存池内溢流水位(并且安装自来水水表)。
2.3雨水利用
(1)管道严禁与生活饮用水给水管道连接
(2)雨水管和自来水管不要接错、管道外壁应按有关标准的规定涂色和标志。
(3)主要水质指标定期检测,对常用控制指标(水量、主要水位、PH值、 浊度、余氯等)实现现成监测,有条件的可实现在线监测。
(4)尽量收集溢流出来的雨水渗入地下补充地下水。
(5)为了收集到清洁的雨水,保持集雨面的清洁,雨水利用设备的维护和管理至关重要,必须不懈怠慢地进行维护管理工作(集雨面、沉砂池、沉淀池、滤网、雨水储存罐、水泵及动力设备等)。
雨水资源化在我国处于初级阶段、但今年来大部分城市工业、农业、生活节水已取得很大成效,水资源保护和污水处理改善水环境的各项措施正在逐步实施。 根据各缺水城市自然特点,千方百计提高有限水资源的利用程度,采取措施拦蓄雨水加以利用,减少暴雨径流,就地开源是一项近期缓解水资源紧缺状况的重要措施,也为远景调水奠定高效用水的基础。
2.4雨水蓄水与渗透
2.4.1建造雨水蓄水和适当处理设施
利用城市建筑屋顶、庭院等不透水面收集雨水,修建雨水蓄水设施,汇集贮存城市雨水作为城市非饮用水的直接水源,可用于冲厕、洗车、消防、浇晒绿地、洗衣服,必要时可以用作工业用水,这在一定程度上可以缓解城市供水压力,减轻水体污染和城市洪涝压力。
2.4.2利用雨水涵养地下水,实现雨水渗透
采用绿色植被与土壤之间增设贮水层、透水层等办法减缓雨水地表径流的速度,增加雨水渗透,补充、涵养地下水源,缓解地面沉降,防止沿海城市的海水入侵。 根据方式不同,雨水渗透可分为分散式和集中式两大类。 可以是自然渗透,也可以是人工渗透。
2.4.3低势绿地
绿地是一种天然的渗透设施。 它具有透水性好、节省投资、便于雨水引入就地消纳等优点,同时对雨水中的一些污染物具有一定的截流和净化作用。 目前我国城市规划要求有较高的绿化率,可以通过改造或设计成低势绿地,以增加雨水渗透量,减少绿化用水并改善环境。
2.4.4人造透水地面
人造透水性地面是指各种人工材料铺设的透水地面,如多孔的嵌草砖、碎石地面,透水性混凝土路面等,能利用表层土壤对雨水的净化能力,对于处理要求相对较低,技术简单,便于管理。
2.4.5渗透管(渠)
渗透管(渠)是在传统雨水排放的基础上,将雨水管或明渠改为渗透管(穿孔管)或渗透渠,周围回填砾石,雨水通过埋设地下的多孔管材向四周土壤层渗透。 渗透管(渠)占地面积少,便于在城区及生活小区设置,它可以与雨水管系、渗透池、渗透井等综合使用,也可以单独使用。 在用地紧张的城区,表层土渗透性很差而下层有渗水性良好的土层、旧排水管系得改造利用、雨水水质较好、狭窄地带等条件下较适用。 一般要求土壤的渗透系数K明显大于10-6m/s,距地下水位应有1m以上的保护土层。
2.4.6渗透池(塘)
渗透池(塘)是利用地面低洼地水塘或地下水池对雨水实施渗透的设施。 当可利用土地充足且土壤渗透性能良好时,可采用地面渗透池。 其最大优点是渗透面积大,能提供较大的深水和储水容量,净化能力强,对水质和预处理要求低,管理方便,具有渗透、调节、净化、改善景观、降低雨水管系负荷与造价等多重功能。 渗透池(塘)一般与绿化、景观结合起来设计,充分发挥城市宝贵土地资源的效益。 当地面土地紧缺时,可以考虑采用地下渗透池,实际上它是一种地下注水渗透装置,利用混凝土砌块、穿孔管、碎石空隙、组装是构建等调蓄雨水并逐渐下渗。
2.4.7屋顶雨水收集和储蓄
在建筑物顶上设计雨水收集和储蓄设施,将收集到的雨水直接用于消防、小区浇晒路面、植树用水、洗车、冲厕所灯,是实现厕所雨水资源化的重要组成部分,在我国,随着城市化进程的加快,城市大型建筑越来越多,建筑物顶部面积越来越大,建筑雨水收集大有作为,因此,在我国要实现雨水资源化,在建筑物上设计雨水收集和贮存设施,达到直接将雨水用做“中水”的措施势在必行。
三、结论
在我国这个水资源很贫乏,但降水资源相对丰富,如何开发利用巨大的降水资源,实现降水资源化,并提高降水资源的利用率,目前,建设资源节约型和环境友好型社会的重要任务所在。但在建设过程中应做到:
3.1树立建设理念
做到源头减排、过程控制、系统治理、功能净化、生态修复、健康循环。
3.2实现目标
做到水资源、水环境、水生态、水安全、水文化同步。
3.3实施途径
遵循政府主导、规划引领、生态优先、安全为重、因地制宜、统筹建设的途径。
雨水利用设施建设不可能高有完全相同的解决方案,应实行一城一策,因地制宜地开展建设,不能生搬硬套,做成样子工程,造成经济浪费。
如何合理选择水产养殖给水处理和废水排放处理的总体方案
一,水产养殖给水处理的选择
1.提升池塘水位。 针对池塘养殖水位偏低,外河水源较差的状况,采取隔三差五少量多次逐步添加池水的方法,使池塘水位逐步提升到1.2米以上,每次加水时选择在晴好天气的上午10时到下午2时间进行。
2.增加水体溶氧。 有增氧设备的可在晴天中午坚持开启增氧机2小时以上,遇到阴雨天或天气突变,要及时开启增氧机。 如无增氧机的可采用潜水泵在池内打循环水(时间在下午3时前,切忌在傍晚进行),增强水体的对流与交换。
3.生物调控水质。 各类养殖品种已进入生长的黄金时期,但在摄食旺盛的同时,其排泄物也显著增多,加速了水质的恶化。 为此建议选择由多种微生物菌种制成的生物制剂泼洒,调控水质,具体用法用量和注意事项按照说明书正确使用。
4.外河网围养蟹的应捞投水草遮荫,减少强光直射,降低水温,如出现缺氧现象可采取用挂机船螺旋桨推水增氧,增加水体流动。
参考网络百科词条水产养殖养殖给水处理技术
水产养殖水体的处理主要包括几个方面,即:增氧、分离(分离固体物和悬浮物)、生物过滤(降低BOD、氨氮和亚硝酸盐)和暴气(去除二氧化碳等)、消毒、脱氮等处理过程,其中悬浮物和氨氮去除是需要解决的主要技术难点。
2.1增氧技术
养殖水体的溶解氧是养殖鱼类赖以生存和处理设备中的微生物生长的必备条件。 在工厂化养殖系统中,鱼类正常生长的溶解氧应该达到饱和溶解度的60%,或者在5mg/l以上;溶解氧低于2mg/l,用于工厂化养殖水体处理的硝化细菌就失去硝化氨氮的作用。 一般情况下,工厂化养殖系统溶解氧消耗主要来自养殖鱼类代谢、代谢物的分解、微生物氨氮处理等,系统所需溶解氧根据所养鱼类的不同而有所变化,并随着养殖密度和投饵的增加而增加。 因此,在工厂化水产养殖的工艺设计中,要根据养殖对象、养殖密度、水体循环量等因素来确定增氧方式。
(1) 空气增氧
由于各种增氧机械设备在工厂化养殖池很难应用,因此,空气增氧多采用风机加充气器的办法,以小气泡的形式增氧。 这种办法虽然具有使用方便、投资小的特点,但是增氧效率低,一般在1.3kg O2/kW-h(20℃温度),28℃时仅为0.455kg O2/kW-h,养殖密度也只能达到30-40kg/m3。 研究工厂化养殖的增氧专用设备,是降低成本,提高效率的重要途径。
(2)纯氧增氧
纯氧根据选择的方便性可分为氧气瓶纯氧,液体氧罐和纯氧发生器三种。 无论采用那种纯氧增氧,象空气增氧中利用充气器的办法都是非常浪费的,最高只有40%的纯氧可以利用,其余没有溶解的氧气逸出水面而浪费。 因此,必须有专门的设备充分利用氧气。 常用的
(3) 微气泡增氧
在利用空气和氧气增氧的研究中,为了提高增氧效率和氧气的利用率,各项研究集中在产生微气泡的技术上,有些学者研究了氧气气泡在水中的形成与溶解变化过程,以确定适宜氧气气泡大小。 日本东京大学研究了利用超声波击碎小气泡的办法,可产生平均直径小于20μm的微气泡,增加了增氧处理的效率。
2. 2悬浮物及其处理技术
工厂化水产养殖中的悬浮物主要由于饵料的投喂而引起。 在一次性过流高密度养殖水体试验中,根据饵料投喂量的不同,其含量在5~50mg/l左右。 在饲料系数0.9~1.0情况下,鱼体每增重1kg就会产生150~200g悬浮物。 因此,作为循环使用的养殖水体,悬浮物在水中的积累是非常迅速的。
养殖水体中鱼类的固体排泄物,在正常代谢的情况下,以悬浮物的形式存在于水体中。 在流动的养殖水体中,悬浮物大部分以小于30μm的颗粒存在于水中。 悬浮物的比重略大于水,颗粒小、流动性好、有一定的黏附性,在有水流的条件下呈悬浮状态。 从养殖水体中去除30μm以下的悬浮物,一直是工厂化水产养殖设计研究的重要方向。
养殖水体中的悬浮物的积累,使水体浑浊,影响养殖鱼类鳃体的过滤和皮肤的呼吸,增加鱼类环境胁迫压力,恶化水质、消耗水中的溶解氧。 工厂化水产养殖过程中及时清除养殖水体中的悬浮物是非常必要的。
2.2 固定式滤床
固定过滤床一般由粗滤、中滤和细滤三层滤料组成。 根据其工作水流的不同可分为喷水式滤床(Trickling filter)和压力式滤床(Pressed filter),是比较普遍的过滤方式。 固定式滤床可根据需要调整滤料的粒度和过滤层的厚度,过滤不同大小的悬浮颗,达到理想的过滤效果。 其应用难度在于设备庞大、效率低、长时间运转容易堵塞,反冲困难。
(2 )滤网过滤
滤网过滤是用细筛网进行悬浮物的过滤,主要有平盘滤网过滤和转鼓滤网过滤。 其中转鼓滤网过滤在不断过滤的同时进行反冲洗,过滤效率高、效果好,应用普遍。 滤网的网目一般约为30~100μm,可过滤36~67%的悬浮物,网目越小过滤越彻底,但是网目小于60μm就会影响过水性能。 为了改善其过滤性能,增加过滤面积,防止堵塞,减少尺寸和反冲用水是进一步研究的重点。
(3) 浮式滤床
浮式滤床应用比水比重小的塑料球作为过滤介质,在过滤过程中悬浮于水中形成过滤层。 塑料浮球具有表面积大、吸附性强、过水阻力小的特点,形成过滤层可有效过滤悬浮物。 浮球直径为3 mm左右滤床,可过滤100%的30μm以上79%的30μm以下的悬浮物颗粒,获得很好过滤效果。 由于养殖水体中的悬浮物具有结块的特性,为了防止反冲时堵塞和较好的过流量,浮球生物滤器需要频繁的反冲,增加了用水量和应用成本。 为了改善其应用效果,必须进一步研究防止堵塞的结构和方法。
(4) 自然沉淀处理
自然沉淀技术是应用鱼池特殊结构或沉淀池,使悬浮物沉淀、集聚并不断排出。 设计良好的沉淀池可去除59%~90%悬浮物,其中设计的关键是确定悬浮物的沉降流速。 有资料表明,应用自然沉淀处理,过流流速应低于4 m/min,适宜流速为1 m/min;单位面积的流量为1.0–2.7 m3/m2h 。 自然沉淀虽然具有较好的效果,但是限制了水体循环的流量,从而使结构庞大,增加了成本。
(5) 气泡浮选处理
气泡浮选处理的原理是通过气泡发生器持续不断的在水中释放气泡,使气泡形成象筛网一样的过滤屏幕,并利用气泡表面的张力吸附水中的悬浮物。 产生微小气泡(直径为10~100μm),使气泡均匀持续与水体有效混合,可有效去除水产养殖水体中的悬浮物。 气泡越小,效率越高。 因此,研究产生微小气泡的发生装置,是该项技术应用的关键。
2.3养殖水体中的氨氮及其处理技术
工厂化养殖水体中的氨氮主要是由于养殖鱼类的代谢、残饵和有机物的分解而引起。 一次性过流试验表明,高密度流水养殖排水中的氨氮浓度一般为1.4 mg/l左右。 投喂的饲料中,大约有40%饲料蛋白的氮被鲑鳟鱼类转化成氨氮(NH3+ NH4+),在饵料系数为1.0的情况下,鲑鳟鱼类每增长1kg就会产生33g N。 如不进行处理,氨氮在循环养殖水体中的积累呈快速直线上升的趋势。
养殖鱼类排泄的氨氮中,大约只有7–32%的总氮是包含在悬浮物中,大部分溶解于养殖水体中,分别以离子铵NH4+和非离子氨NH3的形式存在,并且随着pH值和温度的变化而相互转化。 研究物理、化学和生物的氨氮处理先进技术和有效方法,是工厂化水产养殖的重要课题。
氨氮在养殖水体中的积累会对鱼类产生毒性作用,其中非离子氨对鱼类毒性作用很大。 工厂化养殖水体的氨氮总量一般不应超过1mg/l,非离子氨不应超过0.05mg/l。 由于离子铵NH4+和非离子氨NH3在不同pH值和温度条件下相互转换,因此在控制养殖水体氨氮积累的同时,应注意根据温度的变化调节pH值,从而使非离子氨保持在较低水平。
(1) 空气吹脱
空气吹脱的原理是应用气液相平衡和介质传递亨利定律,在大量充气的条件下,减少了可溶气体的分压,溶解于水体中的氨NH3穿过界面,向空中转移,达到去除氨氮的目的。空气吹脱的效率直接受到pH值的影响,在高pH值的条件下,氨氮大部分以非离子氨的形式存在,形成溶于水的氨气:
HH4++ OH- NH4OH H2O + NH3↑
在pH值为11.5时,水气体积比为1:107的条件下,空气吹脱可去除95%的氨氮,在正常养殖水体也可获得一定的效果。
空气吹脱应用的关键是pH值的调整,使处理过程既能提高处理的效率,又能适应养殖鱼类对水体pH值的要求。 同时空气吹脱需要空气的流量大,养殖水体水温易受影响。
(2) 离子交换吸附
离子交换吸附是应用氟石或交换树脂对水体中的氨氮进行交换和吸附。 氟石的吸附能力约为1mg/g,设计适宜可吸附95%的氨氮,在达到吸附容量后,可用10%的盐水喷林24小时进行再生,重复使用。 在工厂化养殖中应用氟石有较好的效果,但其再生操作烦琐、时间长。 有些研究利用氟石作为生物处理的介质,在氟石上接种硝化细菌,达到提高生物处理效率的目的。
(3) 生物处理
生物处理是利用硝化细菌、亚硝化细菌和反硝化细菌对水中的氨氮进行转化和去除。 亚硝化细菌 (Nitrosomonas europaeaandNitrosococcus mobilis)把氨氮转化为亚硝酸盐、硝化细菌(Nitrobacter winogradskiand GenusNitrospira)把亚硝酸盐转化为硝酸盐。 如果进行彻底脱氮处理,可利用反硝化细菌进行处理。 由于反硝化过程是在厌氧条件下(溶解氧低于1mg/l)进行,应用于水产养殖有一定的困难。 研究表明,硝酸盐对鱼类的影响很小,一些养殖鱼类可抵抗大于200 mg/l浓度的硝酸盐。 因此,水产养殖水体的处理,很少应用反硝化过程。
生物处理具有投资少,效率高的特点,受到广泛的关注和应用。 有资料显示,应用硝化和亚硝化细菌附着浮球进行氨氮处理,氨氮的转化率为380g /(m3·day),饵料负荷能力为32kg/(m3·day)。
但是,硝化细菌的最佳生长温度在30℃以上,温度降低其活性降低,处理能力下降,低于15℃已经很难利用。 有些研究涉及了低温下优势细菌的驯化、培养和利用技术,获得低温下生物处理的良好效果,是水产养殖水体处理的重要研究方向。
(4) 臭氧氧化处理
臭氧作为消毒和去除悬浮物在水产养殖上获得广泛应用,其也有一定的氨氮氧化效果。 研究表明臭氧的直接氧化可去除水体中氨氮的25.8%,在加入催化剂的条件下,可大幅度提高其氧化效率。 臭氧氧化氨氮的方法在水产养殖上还没有深入研究,利用催化方法提高臭氧氧化氨氮的效率,应用于养殖水体的处理,可为水产养殖的氨氮处理开辟新途径。
(5) 电渗析处理
电渗析处理的原理是水体在电场的两极流动时,水中的带电离子在直流电场的作用下定向移动,阴离子透过阴膜进入阴离子集水槽,阳离子通过阳膜进入阳离子集水槽,从而可把水体中的离子氨去除。 由于氨氮在pH值为7的中性条件下,非离子氨仅为氨氮总量的0.55%,99%以上是离子氨,所以电渗析处理可获得好的处理效果。
电渗析处理具有分离效率高、装置紧凑、自动化容易的特点,已经广泛地应用于化工、食品、冶金和航天领域的水处理工程。 结合工厂化水产养殖的实际,研究可用于养殖水体处理的电渗析设备,应是工厂化水产养殖水处理技术研究的新领域。
(6)有害气体处理
工厂化养殖水体中的有害气体主要是鱼类代谢呼吸产生的二氧化碳气体,以微气泡的形式存在于水中。 水中的二氧化碳对鱼类健康非常有害,二氧化碳气体含量超过20mg/l时,养殖鱼类就会产生气体压力反应,表现为向水面或增氧设备集中,摄饲明显减少。
在一定条件下二氧化碳气体可与水结合进行可逆反应形成碳酸。 碳酸是弱酸,也会降低养殖水体的pH值,从而影响水质。 碳酸极不稳定,在空气中很容易分解为水与二氧化碳。 因此,采取措施使养殖水体充分与空气接触,就可及时去除养殖水体中的二氧化碳气体。
2.4 机械设备去除
利用增氧机或暴气设备,在养殖水体中形成上下交换的水流,使水体充分与大气接触,达到分解碳酸,去除二氧化碳的目的。
2.5 水力设计去除
在设计过程中,回水管和回水槽间留有一定高度的落差,使水流在回水过程中充分暴露在大气中,分解碳酸,去除二氧化碳。
2.6 充气去除
在水流通过的水道上设置微气泡释放装置,利用气泡相互积累的特性,使散布于水中的二氧化碳与释放的气泡结合,由气泡把二氧化碳带上水面,达到去除的目的。
2.7消毒杀菌
工厂化水产养殖由于养殖密度高、饵料负载量大,鱼类的代谢在水体中富集了大量营养物资,为细菌的繁殖和生长提供了很好的环境条件,如不及时杀菌消毒,很容易发生疾病,在高密度养殖条件下,发生疾病,很快就会蔓延,对养殖生产造成灾难性的后果。 因此,在系统设计中设置有效的灭菌消毒设备是十分必要的。 消毒杀菌主要有臭氧杀菌消毒和紫外线杀菌消毒。
2.8臭氧杀菌消毒
臭氧是一种极不稳定的强氧化剂,在一定浓度下可破坏细菌、病毒和寄生虫的细胞膜,杀死病原。 有资料表明,根据不同需要,养殖水体中含有0.1-0.2mg/l的臭氧,持续1-30分钟就可以达到杀菌消毒的理想效果。
臭氧还具有沉淀悬浮物和氧化氨氮的作用,如果能提高其综合利用效率,臭氧将会在工厂化水产养殖中得到广泛的应用。
2.9紫外线杀菌消毒
研究表明,一定波长的紫外线(180-300nm)具有很好的灭菌消毒效果。 一般养殖水体中消毒的强度为15,000 - 30,000μw sec./cm2,在紫外线强度为30 000μW/cm时,紫外辐射消毒对几种常见鱼病具有良好的防治效果,如100 %杀灭对虾白斑病需2.67 s;鲤科鱼类的水霉病和病毒性出血性败血症都只需1.60 s。 有些研究进行了紫外线臭氧发生器的试验,在紫外线消毒杀菌的同时,产生一定浓度的臭氧,进行消毒和氨氮的氧化,达到了综合利用目的。
参考《工厂化水产养殖中的水处理技术》原文地址:二.水产养殖废水处理
3.1物理处理技术
常规物理处理技术主要包括过滤、中和、吸附、沉淀、曝气等处理方法 , 是废水处理工艺的重要组成部分。 对于工厂化养殖废水的外排和循环利用处理, 机械过滤和泡沫分离技术处理效果较好。
(1)过滤技术
由于养殖废水中的剩余残饵和养殖生物排泄物等大部分以悬浮态大颗粒形式存在 , 因此采用物理过滤技术去除是最为快捷、经济的方法。 常用的过滤设备有机械过滤器、压力过滤器、沙滤器等 [1] 在实际处理工程中 , 机械过滤器 ( 微滤机) 是应用较多、过滤效果较好的方式。 沸石过滤器兼有过滤与吸附功能 , 不仅可以去除悬浮物 , 同时又可以通过吸附作用有效去除重金属、氨氮等溶解态污染物 [ 2] 。
(2)泡沫分离技术
自 20 世纪 70 年代 , 泡沫分离技术已在工业废水处理中得到广泛应用 [ 3] 。 其原理是向被处理水体中通入空气 , 使水中的表面活性物质被微小气泡吸着 , 并随气泡一起上浮到水面形成泡沫, 然后分离水面泡沫 , 从而达到去除废水中溶解态和悬浮态污染物的目的。 由于泡沫分离技术不仅可以将蛋白质等有机物在未被矿化成氨化物和其他有毒物质前就已被去除 , 避免了有毒物质在水体中积累 [4] , 而且可向养殖水体提供所必需的溶解氧 , 对维护养殖水体生态环境有良好作用。
3.2 化学处理技术
海水工厂化养殖废水存在养殖生物排泄物等悬浮物 , 以及氨氮、可生物降解有机物等物质 ,而且也存在难生物降解有机物。 因此 , 利用臭氧、过氧化氢、二氧化氯、漂白液等化学氧化剂的氧化作用 , 氧化分解难生物降解溶解态有机物是养殖废水深度处理的主要手段。 臭氧氧化技术已在西欧、美国和日本被广泛应用于海水养殖系统的循环水处理 [ 5] 。 此外 , 臭氧不仅能快速降低海水COD , 而且还可大大降低水体中氨氮和亚硝酸盐浓度 [ 3] 。 但所消耗的臭氧量很大。 因此采用O 3 / UV 工艺 , 既能提高处理效率又可减少臭氧的用量。 用 O 3 / UV 技术净化湖水可达到水质净化及水体增氧的目的 [6] 。
3.3生物修复技术
生物修复包括生物降解、生物吸收、积累和转化等 , 生物修复可以利用作用生物自身的功能消除污染物或改变污染物的存在形态而降低其毒性, 使退化的或破坏了的生态系统得以恢复或重建。 生物修复最大的特点是在系统内不引入大量的外来物质 , 靠作用生物自身的能量而起作用 ; 另一方面, 在适宜的条件下作用生物自行繁衍 , 不需要或极少需要人为施加能量 , 是一个自发过程。 生物修复包括微生物作用、植物作用及水生动物作用等。
(1)微生物作用
目前国内外使用最多的微生物净化技术是投菌技术和生物膜技术等。 投菌技术是直接向污染水体中接入外源的污染降解菌, 然后利用投加的微生物激活水体中原本存在的可以自净的、但被抑制而不能发挥其功效的微生物, 并通过它们的迅速增殖, 强有力地钳环境与资源制有害微生物的生长和活动, 从而消除水域中的有机污染及水体的富营养化。 目前国内外常用的有集中 式生 物系 统 ( central biological system,CBS) 、高效复合微生物菌群( EM) 及固定化细菌等技术。 CBS 技术是由美国 CBS 公司的科学家开发研制的一种高科技生物修复技术, 它是由几十种具备各种功能的微生物组成的一个良性循环的微生物系统。 重庆桃化溪在 2000 年 3- 4 月间曾使用 CBS 技术净化河水。 结果显示, BOD 的去除率为83. 1% ~ 86. 6% , COD 的去除率为 74. 3% ~80. 9%, 氮的去除率为 53% ~ 68. 2%, 磷的去除率为 74. 3% ~ 80. 9% , 净化效果十分明显 [7] 。 固定化微生物技术是通过一定的包埋方式将生化处理菌种固定在一个适宜其繁殖、生长的微环境中的技术, 从而达到有效降解养殖废水中某
些特定污染物的目的 [ 8] 。 目前一般是经过富集、培养、筛选得到的高密度生化处理混合菌 , 包埋在海藻酸钠、PVA 等凝胶材料中 [ 1] , 结果使天然海水环境中相对贫乏的菌种在包埋体系中形成优势菌种, 并且使包埋体系中的生化处理菌不易随意流失, 从而达到有效处理养殖废水的目的。 由于固定化微生物密度高、活性强、反应速度快, 与常规的微生物挂膜生化处理技相比, 对氨氮和某些难生物降解有机物具有显著去除作用 [ 9] , 因此该技术有望成为海水工厂化养殖废水处理的重要生化处理技术。 生物膜技术是废水连续流经固体填料( 碎石、塑料填料等) , 在填料上就会生成生物膜, 生物膜繁殖着大量的微生物, 起到净化废水的作用, 生物膜法有多种处理构筑物, 其中有生物滤池、生物转盘、生物接触氧化和生物流化床等。 也可通过共
代谢作用, 利用微生物和植物或动物的共同作用来得到除污效果 [10] 。
(2)植物作用
大型藻类能通过光合作用吸收固定水体的C、N、P 等营养物质来合成自身, 同时增加水体溶解氧。 对大型海藻化学成分的分析表明, 大型海藻组织中具有丰富的氮库, 可以高效地吸收储存大量的营养盐。 大型海藻组织中的营养库一般包括: 无机氮库、氨基酸氮库和非蛋白可溶性有机氮库( 如叶绿素、藻红素等) 、蛋白质氮库( 如酶类)等 [ 11] 。 在小水体的鱼类养殖系中, 利用海藻吸收养殖废水中的无机营养盐, 能减少水体中约50%的 NH 4 - N, 同时海藻的净产量可以提高18%
[ 12], 另外, 大型海藻对污染环境也具有较强的耐受力和清洁作用, 有报道表明在受金属和有机污染的海区种植大型海藻, 可以提高水体 DO,降低 BOD、POC 以及铜、锌、铅和镉等金属含量,促进污染区环境的恢复 [ 13] 。藻类可以有效地富
集和降解农药、烷烃、偶氮染料、淀粉、酚类、邻苯二甲酸酯及金属有机染料物等多种有机化合物( 严国安, 1995) 。
(3) 水生动物作用
近年来, 国内外许多学者和研究人员致力于利用水生动物对水体中有机和无机物质的吸收和利用来净化污水, 通过水生动物直接吸收营养盐类、有机碎屑、细菌和浮游植物, 取得明显的效果。能净化污水的水生动物主要有滤食性鱼类, 双壳
贝类以及水 氵蚤 等小型浮游动物等。
{1}. 鱼类的净化作用
遮目鱼在海中生活时以底栖藻类及多细胞植物碎屑为饵, 它是我国台湾省虾池中混养的主要鱼类, 另外, 梭鱼、鲻鱼、莫桑比克罗非鱼等也能利用藻类及有机碎屑, 可与对虾混养, 起净化水质的作用。据对鲻鱼食性分析, 腐败有机物占 38% ~ 50%, 砂粒 28%~ 30%,蓝绿藻 12%~ 16%, 硅藻 15% ~ 18% , 无脊椎动物 0. 2% ~ 2%
{2}双壳贝类的净化作用 ? 双壳贝类多是滤食水中的浮游生物、有机碎屑等饵料的, 通过其滤食活动, 起到净化水质的作用。 在对虾养殖池塘中, 可混养缢蛏、牡蛎、文蛤、扇贝等, 来减轻池水的富营养化, 而且其本身也具有较高的经济价值。
据张德玉报道( 1991) 虾池混养适量扇贝会起到净水的作用, 放养扇贝前化学耗氧量在6. 5mg/ L, 放养扇贝后到 8 月 10 日降到2. 70mg/ L, 8 月 15 日降到 2. 24 mg/ L。
{3}.水 氵蚤 等小型浮游动物的净化作用
水 氵蚤等小型浮游动物的食物主要是细菌、单细胞藻类和有机碎屑等, 其滤食活动也有净化水质的作用。
{4}. 生物净化存在问题及发展前景
传统的微生物处理技术大多是对自然生长的微生物群体加以选择、繁殖利用, 对污染物的降解水平较低, 必须进行遗传学改造, 定向选育出降解环境与资源能力极高的工程菌种, 才能大幅度提高微生物的降解能力, 以适应废水处理要求 [ 14] 。 人工构建的降解污染物的基因工程菌, 一般具有生长迅速, 絮凝性能较好和对难降解污染物及有毒有害污染物具有较高的专一降解能力。 已发现抗汞、抗镉、抗铅等具有抗重金属基因的多种菌株。 生物的净化功能依靠生物酶的催化作用而实现。 为了提高生
物酶活性, 固定化技术是当今十分活跃的研究方向。 细胞是多酶系统, 固定化细胞稳定性好, 催化效率高, 其成本低, 因而固定化细胞技术引起了国内外广泛关注, 并取得了大量的成果。
参考河北渔业 2007 年第 2 期( 总第 158 期)水产养殖废水的处理方法(郑佳瑞)
标签: 抗腐蚀性强 用于恢复受损生态环境 价格相对较低 要求透水性好 生态修复
还木有评论哦,快来抢沙发吧~